Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38431757

RESUMO

Increasing evidence points toward the role of the extracellular matrix, specifically matrix metalloproteinase 9 (MMP-9), in the pathophysiology of psychosis. MMP-9 is a critical regulator of the crosstalk between peripheral and central inflammation, extracellular matrix remodeling, hippocampal development, synaptic pruning, and neuroplasticity. Here, we aim to characterize the relationship between plasma MMP-9 activity, hippocampal microstructure, and cognition in healthy individuals and individuals with early phase psychosis. We collected clinical, blood, and structural and diffusion-weighted magnetic resonance imaging data from 39 individuals with early phase psychosis and 44 age and sex-matched healthy individuals. We measured MMP-9 plasma activity, hippocampal extracellular free water (FW) levels, and hippocampal volumes. We used regression analyses to compare MMP-9 activity, hippocampal FW, and volumes between groups. We then examined associations between MMP-9 activity, FW levels, hippocampal volumes, and cognitive performance assessed with the MATRICS battery. All analyses were controlled for age, sex, body mass index, cigarette smoking, and years of education. Individuals with early phase psychosis demonstrated higher MMP-9 activity (p < 0.0002), higher left (p < 0.05) and right (p < 0.05) hippocampal FW levels, and lower left (p < 0.05) and right (p < 0.05) hippocampal volume than healthy individuals. MMP-9 activity correlated positively with hippocampal FW levels (all participants and individuals with early phase psychosis) and negatively with hippocampal volumes (all participants and healthy individuals). Higher MMP-9 activity and higher hippocampal FW levels were associated with slower processing speed and worse working memory performance in all participants. Our findings show an association between MMP-9 activity and hippocampal microstructural alterations in psychosis and an association between MMP-9 activity and cognitive performance. Further, more extensive longitudinal studies should examine the therapeutic potential of MMP-9 modulators in psychosis.

2.
J Neurotrauma ; 41(3-4): 393-406, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37776177

RESUMO

Brain edema formation is a key factor for secondary tissue damage after traumatic brain injury (TBI), however, the type of brain edema and the temporal profile of edema formation are still unclear. We performed free water imaging, a bi-tensor model based diffusion MRI analysis, to characterize vasogenic brain edema (VBE) and cytotoxic edema (CBE) formation up to 7 days after experimental TBI. Male C57/Bl6 mice were subjected to controlled cortical impact (CCI) or sham surgery and investigated by MRI 4h, 1, 2, 3, 5, and 7 days thereafter (n = 8/group). We determined mean diffusivity (MD) and free water (FW) in contusion, pericontusional area, ipsi- and contralateral brain tissue. Free (i.e., non-restricted) water was interpreted as VBE, restricted water as CBE. To verify the results, VBE formation was investigated by in-vivo 2-Photon Microscopy (2-PM) 48h after surgery. We found that MD and FW values decreased for 48h within the contusion, indicating the occurrence of CBE. In pericontusional tissue, MD and FW indices were increased at all time points, suggesting the formation of VBE. This was consistent with our results obtained by 2-PM. Taken together, CBE formation occurs for 48h after trauma and is restricted to the contusion, while VBE forms in pericontusional tissue up to 7 days after TBI. Our results indicate that free water magnetic resonance imaging may represent a promising tool to investigate vasogenic and cytotoxic brain edema in the laboratory and in patients.


Assuntos
Edema Encefálico , Lesões Encefálicas Traumáticas , Contusões , Humanos , Masculino , Camundongos , Animais , Edema Encefálico/diagnóstico por imagem , Edema Encefálico/etiologia , Edema Encefálico/patologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Edema , Água
3.
J Cereb Blood Flow Metab ; 42(9): 1707-1718, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35410517

RESUMO

In cerebral small vessel disease (CSVD), both white matter hyperintensities (WMH) of presumed vascular origin and the normal-appearing white matter (NAWM) contain microstructural brain alterations on diffusion-weighted MRI (DWI). Contamination of DWI-derived metrics by extracellular free-water can be corrected with free-water (FW) imaging. We investigated the alterations in FW and FW-corrected fractional anisotropy (FA-t) in WMH and surrounding tissue and their association with cerebrovascular risk factors. We analysed 1,000 MRI datasets from the Hamburg City Health Study. DWI was used to generate FW and FA-t maps. WMH masks were segmented on FLAIR and T1-weighted MRI and dilated repeatedly to create 8 NAWM masks representing increasing distance from WMH. Linear models were applied to compare FW and FA-t across WMH and NAWM masks and in association with cerebrovascular risk. Median age was 64 ± 14 years. FW and FA-t were altered 8 mm and 12 mm beyond WMH, respectively. Smoking was significantly associated with FW in NAWM (p = 0.008) and FA-t in WMH (p = 0.008) and in NAWM (p = 0.003) while diabetes and hypertension were not. Further research is necessary to examine whether FW and FA-t alterations in NAWM are predictors for developing WMH.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Leucoaraiose , Substância Branca , Idoso , Anisotropia , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Água , Substância Branca/irrigação sanguínea , Substância Branca/diagnóstico por imagem
4.
Diagnostics (Basel) ; 11(12)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34943621

RESUMO

Diffusion MRI is a useful tool to investigate the microstructure of brain tumors. However, the presence of fast diffusing isotropic signals originating from non-restricted edematous fluids, within and surrounding tumors, may obscure estimation of the underlying tissue characteristics, complicating the radiological interpretation and quantitative evaluation of diffusion MRI. A multi-shell regularized free water (FW) elimination model was therefore applied to separate free water from tissue-related diffusion components from the diffusion MRI of 26 treatment-naïve glioma patients. We then investigated the diagnostic value of the derived measures of FW maps as well as FW-corrected tensor-derived maps of fractional anisotropy (FA). Presumed necrotic tumor regions display greater mean and variance of FW content than other parts of the tumor. On average, the area under the receiver operating characteristic (ROC) for the classification of necrotic and enhancing tumor volumes increased by 5% in corrected data compared to non-corrected data. FW elimination shifts the FA distribution in non-enhancing tumor parts toward higher values and significantly increases its entropy (p ≤ 0.003), whereas skewness is decreased (p ≤ 0.004). Kurtosis is significantly decreased (p < 0.001) in high-grade tumors. In conclusion, eliminating FW contributions improved quantitative estimations of FA, which helps to disentangle the cancer heterogeneity.

5.
Diagnostics (Basel) ; 12(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35054192

RESUMO

Proton beam therapy (PBT) is an effective pediatric brain tumor treatment. However, the resulting microstructural changes within and around irradiated tumors are unknown. We retrospectively applied diffusion tensor imaging (DTI) and free-water imaging (FWI) on diffusion-weighted magnetic resonance imaging (dMRI) data to monitor microstructural changes during the PBT and after 8 months in a pilocytic astrocytoma (PA) and normal-appearing white matter (NAWM). We evaluated the conventional MRI- and dMRI-derived indices from six MRI sessions (t0-t5) in a Caucasian child with a hypothalamic PA: at baseline (t0), during the PBT (t1-t4) and after 8 months (t5). The tumor voxels were classified as "solid" or "fluid" based on the FWI. While the tumor volume remained stable during the PBT, the dMRI analyses identified two different response patterns: (i) an increase in fluid content and diffusivity with anisotropy reductions in the solid voxels at t1, followed by (ii) smaller variations in fluid content but higher anisotropy in the solid voxels at t2-t4. At follow-up (t5), the tumor volume, fluid content, and diffusivity in the solid voxels increased. The NAWM showed dose-dependent microstructural changes. The use of the dMRI and FWI showed complex dynamic microstructural changes in the irradiated mass during the PBT and at follow-up, opening new avenues in our understanding of radiation-induced pathophysiologic mechanisms in tumors and the surrounding tissues.

6.
PLoS One ; 15(5): e0233645, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32469944

RESUMO

Characterization of healthy versus pathological tissue in the peritumoral area is confounded by the presence of edema, making free water estimation the key concern in modeling tissue microstructure. Most methods that model tissue microstructure are either based on advanced acquisition schemes not readily available in the clinic or are not designed to address the challenge of edema. This underscores the need for a robust free water elimination (FWE) method that estimates free water in pathological tissue but can be used with clinically prevalent single-shell diffusion tensor imaging data. FWE in single-shell data requires the fitting of a bi-compartment model, which is an ill-posed problem. Its solution requires optimization, which relies on an initialization step. We propose a novel initialization approach for FWE, FERNET, which improves the estimation of free water in edematous and infiltrated peritumoral regions, using single-shell diffusion MRI data. The method has been extensively investigated on simulated data and healthy dataset. Additionally, it has been applied to clinically acquired data from brain tumor patients to characterize the peritumoral region and improve tractography in it.


Assuntos
Edema Encefálico/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Água/análise , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Edema Encefálico/complicações , Neoplasias Encefálicas/complicações , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
7.
Parkinsonism Relat Disord ; 65: 146-152, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31182373

RESUMO

BACKGROUND: Prior work demonstrated that free water in the posterior substantia nigra (SN) was elevated in Parkinson's disease (PD) compared to healthy controls (HC) across single- and multi-site cohorts, and increased over 1 year in Parkinson's disease but not in relation with the iron deposition in SN with the relaxometry T2*. OBJECTIVES: The main objective of the present study was to evaluate changes in the SN using relaxometry T2*, single- and bi-tensor models of diffusion magnetic resonance imaging between PD patients and HC. METHODS: 39 subjects participated in this study, including 21 HCs and 18 PD patients, in moderate stage (7 years), whose data were collected at two visits separated by approximately 2 years, underwent 3-T MRI comprising: T2*-weighted, T1-weighted and diffusion tensor imaging (DTI) scans. Relaxometry T2*, bi-tensor free water (FW), free-water-corrected fractional anisotropy, free-water-corrected mean diffusivity, single-tensor fractional anisotropy, and single-tensor mean diffusivity were computed for the anterior, posterior and whole substantia nigra. RESULTS: In the anterior SN, relaxometry T2* values were greater for PD patients than HCs. In the posterior SN, free water, single- and bi-tensor mean diffusivity values were greater for PD patients than HCs. No significant change were found over time in FW/MD/R2* maps for PD patients with moderate stage. CONCLUSION: The specific increase of R2* in the anterior SN concomitant with the specific increase of FW in posterior SN suggests a complementary aspect of the two parameters and, perhaps, different underlying pathophysiological processes.


Assuntos
Água Corporal/diagnóstico por imagem , Ferro , Imageamento por Ressonância Magnética , Doença de Parkinson/diagnóstico por imagem , Substância Negra/diagnóstico por imagem , Idoso , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
8.
PLoS One ; 13(5): e0197056, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29746544

RESUMO

PURPOSE: Peritumoral edema impedes the full delineation of fiber tracts due to partial volume effects in image voxels that contain a mixture of cerebral parenchyma and extracellular water. The purpose of this study is to investigate the effect of incorporating a free water (FW) model of edema for white matter tractography in the presence of edema. MATERIALS AND METHODS: We retrospectively evaluated 26 consecutive brain tumor patients with diffusion MRI and T2-weighted images acquired presurgically. Tractography of the arcuate fasciculus (AF) was performed using the two-tensor unscented Kalman filter tractography (UKFt) method, the UKFt method with a reduced fiber tracking stopping fractional anisotropy (FA) threshold (UKFt+rFA), and the UKFt method with the addition of a FW compartment (UKFt+FW). An automated white matter fiber tract identification approach was applied to delineate the AF. Quantitative measurements included tract volume, edema volume, and mean FW fraction. Visual comparisons were performed by three experts to evaluate the quality of the detected AF tracts. RESULTS: The AF volume in edematous brain hemispheres was significantly larger using the UKFt+FW method (p<0.0001) compared to UKFt, but not significantly larger (p = 0.0996) in hemispheres without edema. The AF size increase depended on the volume of edema: a significant correlation was found between AF volume affected by (intersecting) edema and AF volume change with the FW model (Pearson r = 0.806, p<0.0001). The mean FW fraction was significantly larger in tracts intersecting edema (p = 0.0271). Compared to the UKFt+rFA method, there was a significant increase of the volume of the AF tract that intersected the edema using the UKFt+FW method, while the whole AF volumes were similar. Expert judgment results, based on the five patients with the smallest AF volumes, indicated that the expert readers generally preferred the AF tract obtained by using the FW model, according to their anatomical knowledge and considering the potential influence of the final results on the surgical route. CONCLUSION: Our results indicate that incorporating biophysical models of edema can increase the sensitivity of tractography in regions of peritumoral edema, allowing better tract visualization in patients with high grade gliomas and metastases.


Assuntos
Edema Encefálico/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Imagem de Tensor de Difusão , Glioma/diagnóstico por imagem , Modelos Neurológicos , Adulto , Idoso , Edema Encefálico/fisiopatologia , Neoplasias Encefálicas/fisiopatologia , Feminino , Glioma/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
9.
Neuroimage Clin ; 15: 819-831, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28725549

RESUMO

Diffusion MRI tractography is increasingly used in pre-operative neurosurgical planning to visualize critical fiber tracts. However, a major challenge for conventional tractography, especially in patients with brain tumors, is tracing fiber tracts that are affected by vasogenic edema, which increases water content in the tissue and lowers diffusion anisotropy. One strategy for improving fiber tracking is to use a tractography method that is more sensitive than the traditional single-tensor streamline tractography. We performed experiments to assess the performance of two-tensor unscented Kalman filter (UKF) tractography in edema. UKF tractography fits a diffusion model to the data during fiber tracking, taking advantage of prior information from the previous step along the fiber. We studied UKF performance in a synthetic diffusion MRI digital phantom with simulated edema and in retrospective data from two neurosurgical patients with edema affecting the arcuate fasciculus and corticospinal tracts. We compared the performance of several tractography methods including traditional streamline, UKF single-tensor, and UKF two-tensor. To provide practical guidance on how the UKF method could be employed, we evaluated the impact of using various seed regions both inside and outside the edematous regions, as well as the impact of parameter settings on the tractography sensitivity. We quantified the sensitivity of different methods by measuring the percentage of the patient-specific fMRI activation that was reached by the tractography. We expected that diffusion anisotropy threshold parameters, as well as the inclusion of a free water model, would significantly influence the reconstruction of edematous WM fiber tracts, because edema increases water content in the tissue and lowers anisotropy. Contrary to our initial expectations, varying the fractional anisotropy threshold and including a free water model did not affect the UKF two-tensor tractography output appreciably in these two patient datasets. The most effective parameter for increasing tracking sensitivity was the generalized anisotropy (GA) threshold, which increased the length of tracked fibers when reduced to 0.075. In addition, the most effective seeding strategy was seeding in the whole brain or in a large region outside of the edema. Overall, the main contribution of this study is to provide insight into how UKF tractography can work, using a two-tensor model, to begin to address the challenge of fiber tract reconstruction in edematous regions near brain tumors.


Assuntos
Neoplasias Encefálicas/patologia , Imagem de Tensor de Difusão , Edema/patologia , Processamento de Imagem Assistida por Computador , Tratos Piramidais/patologia , Algoritmos , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Fibras Nervosas/patologia , Vias Neurais/patologia , Estudos Retrospectivos
10.
Int J Comput Assist Radiol Surg ; 11(8): 1475-86, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26762104

RESUMO

PURPOSE: The aim of this study was to present a tractography algorithm using a two-tensor unscented Kalman filter (UKF) to improve the modeling of the corticospinal tract (CST) by tracking through regions of peritumoral edema and crossing fibers. METHODS: Ten patients with brain tumors in the vicinity of motor cortex and evidence of significant peritumoral edema were retrospectively selected for the study. All patients underwent 3-T magnetic resonance imaging (MRI) including functional MRI (fMRI) and a diffusion-weighted data set with 31 directions. Fiber tracking was performed using both single-tensor streamline and two-tensor UKF tractography methods. A two-region-of-interest approach was used to delineate the CST. Results from the two tractography methods were compared visually and quantitatively. fMRI was applied to identify the functional fiber tracts. RESULTS: Single-tensor streamline tractography underestimated the extent of tracts running through the edematous areas and could only track the medial projections of the CST. In contrast, two-tensor UKF tractography tracked fanning projections of the CST despite peritumoral edema and crossing fibers. Based on visual inspection, the two-tensor UKF tractography delineated tracts that were closer to motor fMRI activations, and it was apparently more sensitive than single-tensor streamline tractography to define the tracts directed to the motor sites. The volume of the CST was significantly larger on two-tensor UKF than on single-tensor streamline tractography ([Formula: see text]). CONCLUSION: Two-tensor UKF tractography tracks a larger volume CST than single-tensor streamline tractography in the setting of peritumoral edema and crossing fibers in brain tumor patients.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Edema/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Tratos Piramidais/diagnóstico por imagem , Adulto , Algoritmos , Neoplasias Encefálicas/cirurgia , Edema/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
11.
Neuroimage Clin ; 7: 815-22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26082890

RESUMO

BACKGROUND: Diffusion imaging tractography is increasingly used to trace critical fiber tracts in brain tumor patients to reduce the risk of post-operative neurological deficit. However, the effects of peritumoral edema pose a challenge to conventional tractography using the standard diffusion tensor model. The aim of this study was to present a novel technique using a two-tensor unscented Kalman filter (UKF) algorithm to track the arcuate fasciculus (AF) in brain tumor patients with peritumoral edema. METHODS: Ten right-handed patients with left-sided brain tumors in the vicinity of language-related cortex and evidence of significant peritumoral edema were retrospectively selected for the study. All patients underwent 3-Tesla magnetic resonance imaging (MRI) including a diffusion-weighted dataset with 31 directions. Fiber tractography was performed using both single-tensor streamline and two-tensor UKF tractography. A two-regions-of-interest approach was applied to perform the delineation of the AF. Results from the two different tractography algorithms were compared visually and quantitatively. RESULTS: Using single-tensor streamline tractography, the AF appeared disrupted in four patients and contained few fibers in the remaining six patients. Two-tensor UKF tractography delineated an AF that traversed edematous brain areas in all patients. The volume of the AF was significantly larger on two-tensor UKF than on single-tensor streamline tractography (p < 0.01). CONCLUSIONS: Two-tensor UKF tractography provides the ability to trace a larger volume AF than single-tensor streamline tractography in the setting of peritumoral edema in brain tumor patients.


Assuntos
Edema Encefálico/patologia , Neoplasias Encefálicas/cirurgia , Córtex Cerebral/patologia , Glioblastoma/cirurgia , Meningioma/cirurgia , Fibras Nervosas/patologia , Vias Neurais/patologia , Oligodendroglioma/cirurgia , Cirurgia Assistida por Computador/métodos , Adulto , Idoso , Algoritmos , Edema Encefálico/etiologia , Neoplasias Encefálicas/complicações , Imagem de Tensor de Difusão , Feminino , Lobo Frontal/patologia , Glioblastoma/patologia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética , Masculino , Meningioma/patologia , Pessoa de Meia-Idade , Procedimentos Neurocirúrgicos , Oligodendroglioma/patologia , Tamanho do Órgão , Lobo Parietal/patologia , Estudos Retrospectivos , Lobo Temporal/patologia
12.
Magn Reson Med ; 62(3): 717-30, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19623619

RESUMO

Relating brain tissue properties to diffusion tensor imaging (DTI) is limited when an image voxel contains partial volume of brain tissue with free water, such as cerebrospinal fluid or edema, rendering the DTI indices no longer useful for describing the underlying tissue properties. We propose here a method for separating diffusion properties of brain tissue from surrounding free water while mapping the free water volume. This is achieved by fitting a bi-tensor model for which a mathematical framework is introduced to stabilize the fitting. Applying the method on datasets from a healthy subject and a patient with edema yielded corrected DTI indices and a more complete tract reconstruction that passed next to the ventricles and through the edema. We were able to segment the edema into areas according to the condition of the underlying tissue. In addition, the volume of free water is suggested as a new quantitative contrast of diffusion MRI. The findings suggest that free water is not limited to the borders of the brain parenchyma; it therefore contributes to the architecture surrounding neuronal bundles and may indicate specific anatomical processes. The analysis requires a conventional DTI acquisition and can be easily merged with existing DTI pipelines.


Assuntos
Algoritmos , Artefatos , Água Corporal , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Neoplasias Meníngeas/patologia , Meningioma/patologia , Adulto , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
Neuroimage ; 30(4): 1100-11, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16427322

RESUMO

In vivo white matter tractography by diffusion tensor imaging (DTI) has become a popular tool for investigation of white matter architecture in the normal brain. Despite some unresolved issues regarding the accuracy of DTI, recent studies applied DTI for delineating white matter organization in the vicinity of brain lesions and especially brain tumors. Apart from the intrinsic limitations of DTI, the tracking of fibers in the vicinity or within lesions is further complicated due to changes in diseased tissue such as elevated water content (edema), tissue compression and degeneration. These changes deform the architecture of the white matter and in some cases prevent definite selection of the seed region of interest (ROI) from which fiber tracking begins. We show here that for displaced fiber systems, the use of anatomical approach for seed ROI selection yields insufficient results. Alternatively, we propose to select the seed points based on functional MRI activations which constrain the subjective seed ROI selection. The results are demonstrated on two major fiber systems: the pyramidal tract and the superior longitudinal fasciculus that connect critical motor and language areas, respectively. The fMRI based seed ROI selection approach enabled a more comprehensive mapping of these fiber systems. Furthermore, this procedure enabled the characterization of displaced white matter using the eigenvalue decomposition of DTI. We show that along the compressed fiber system, the diffusivity parallel to the fiber increases, while that perpendicular to the fibers decreases, leading to an overall increase in the fractional anisotropy index reflecting the compression of the fiber bundle. We conclude that definition of the functional network of a subject with deformed white matter should be done carefully. With fMRI, one can more accurately define the seed ROI for DTI based tractography and to provide a more comprehensive, functionally related, white matter mapping, a very important tool used in pre-surgical mapping.


Assuntos
Mapeamento Encefálico , Neoplasias Encefálicas/diagnóstico , Córtex Cerebral/patologia , Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Fibras Nervosas Mielinizadas/patologia , Vias Neurais/patologia , Tratos Piramidais/patologia , Anisotropia , Edema Encefálico/diagnóstico , Edema Encefálico/patologia , Edema Encefálico/fisiopatologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/fisiopatologia , Córtex Cerebral/fisiopatologia , Dominância Cerebral/fisiologia , Humanos , Cápsula Interna/patologia , Cápsula Interna/fisiopatologia , Invasividade Neoplásica/patologia , Fibras Nervosas Mielinizadas/fisiologia , Vias Neurais/fisiopatologia , Testes Neuropsicológicos , Tratos Piramidais/fisiopatologia , Valores de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA